If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-12y-4=0
a = 1; b = -12; c = -4;
Δ = b2-4ac
Δ = -122-4·1·(-4)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{10}}{2*1}=\frac{12-4\sqrt{10}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{10}}{2*1}=\frac{12+4\sqrt{10}}{2} $
| -155=-3x+75x | | 2n+6n-5n=9 | | 0=y^2-12y-4 | | 3(x-6)+8=-13 | | P(x)=8x-120 | | -5+4u=-13 | | 512x=64 | | x=4+14142 | | 2=d÷7 | | 5x+2.3=-18.8 | | 2n+4/3=4(n-3) | | 3(2)=2y=6 | | 6x+14=7x-(-5) | | 3x+2=146 | | 12–n=13 | | -11x^2+500x+2500=0 | | 250+5x=500 | | 7=4-(x+12) | | 180=5x+(3x+12) | | 5/12x+1/4=2/3 | | 1.5+8-0.5=x | | H(t)=16^2+65t+15 | | 1+-1x=23+-10 | | 27x3+1=0 | | 25*5/12=x*1/2 | | 70-x=63 | | 18-6p=24+6p | | 7w-3=-3w+2(5w+3) | | n^2+10n+88=0 | | 3/2y+1/4y=30 | | 6(x+2)=(2x+2)+5x+(6x-4) | | 6m=1=6m |